Visit us at www.agyatgupta.com

TARGET MATHEMATICS
 THE EXCELLENCE KEY
 AGYAT GUPTA (M.Sc., M.Phil.)

CODE:1812-AG-5-SA-2 REGNO:TMC-D/79/99/36663

GENERAL INSTRUCTIONS:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section - A comprises of 4 question of 1 mark each. Section - B comprises of 6 questions of 2 marks each. Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 11 questions of 4 marks each.
3. Use of calculator is not permitted.

Visit us at www.agyatgupta.com

Q. 9	If the points $A(-2,2)$ and $B(x, 8)$ are on the circle with the centre $O(2,5)$, find the value of x.
Q. 10	If the perimeter of a sector of a circle of radius 5.7 m is 27.2 m , then find the area of the sector.
	SECTION C
Q. 11	There is a small island in the middle of a 100 m wide river and a tall tree stands on the island. P and Q are points directly opposite to each other on two banks, and in line with the tree. If the angles of elevation of the top of the tree from P and Q are respectively 30° and 45°, find the height of the tree.
Q. 12	In the figure OAPB is a sector of a circle of radius 3.5 cm with the centre at O and $\angle \mathrm{AOB}=120^{\circ}$. Find the length of OAPBO.
Q. 13	Prove that the area of triangle with vertices $(t, t-2) ;(t+2, t+2) \&(t+3, t)$ is in depended of t . Also find its area .
Q.	Which term of the sequence $20,19 \frac{1}{2}, 18 \frac{1}{2}, 17 \frac{3}{4}$ is the $1^{\text {st }}$ negative term.
Q. 15	The line segment joining the points $\mathrm{A}(3,-4)$ and $\mathrm{B}(1,2)$ is trisected at the point P and Q . If the co-ordinate of p and q are $(\mathrm{p},-2)$ and $\left(\frac{5}{3}, q\right)$ where P nearer to A and Q nearer to B Find the values of p and q.
Q. 16	Two poles of equal heights are standing opposite each other on either side of a road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distance of the point from the poles.
Q. 17	Solve for $\mathrm{x}: ~ \sqrt{2 x+9}+x=13$.
Q. 18	The sum of three number in A.P. is -3

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Visit us at www.agyatgupta.com

	numbers.
Q. 19	Find the coordinates of the circum centre of the triangle whose vertices are (3, $0),(-1,-6)$ and $(4,-1)$. Also, find its circum radius.
Q. 20	The ratio of the sum of m and n of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the m th and nth terms is $(2 m-1)$: $(2 n-1)$.
	SECTION D
Q. 21	A ladder rests against a wall at the angle α to the horizontal. When its foot is pulled away from the wall through a distance a, it slides a distance b down the wall and makes an angle β with the horizontal. Show that $\frac{a}{b}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$.
Q. 22	The sum of the first, p, q, r terms of an A.P. area a, b, c respectively. Show that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$.
Q. 23	The base BC of an equilateral triangle ABC lies y -axis .the co-ordinates of the points c are $(0,-3)$ if the origin is the mid- point of the base B, find the coordinate of the points A and B and hence find the area of the $\Delta \mathrm{ABC}$.
Q. 24	The short and long hands of a clock are 4 cm and 6 cm long respectively. Find the sum of of the distances traveled by their tips in two days. Take $\left(\pi=\frac{22}{7}\right)$
Q. 25	Rs. 9000 were divider equally among a certain number of persons. Had there been 20 more persons, each would have got rs. 160 less. Find the original number of persons.
Q. 26	If the three vertices of a parallelogram $A(6,1), B(8,2), C(9,4) . E$ is the mid point of CD . Find the area of triangle AED .
Q. 27	From the top of a building 60 m high, the angles of depression of the top and bottom of a vertical lamp post are observed to be 30° and 60° respectively, Find the height of the lamp post.
Q. 28	In given fig is shown a sector OAP of a circle with center O containing $\angle \theta$. AB is perpendicular to the radius OA and meets OP produced at B . Prove that the perimeter of the shaded region is

Visit us at www.agyatgupta.com

